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Abstract. Net primary production of the oceans contributes approximately half of the total global net 12 

primary production and long-term observational records are required to assess any climate driven changes. 13 

The Ocean Colour Climate Change Initiative (OC-CCI) has proven to be robust, whilst also being one of 14 

the longest records of ocean colour. However, to date only one primary production algorithm has been 15 

applied to this data product with other algorithms typically applied to single sensor missions. The data 16 

product presented here addresses this issue by applying five algorithms to the OC-CCI data product, which 17 

allows the user to interrogate the range of distribution across multiple models and to identify consensus or 18 

outliers for their specific region of interest. Outputs are compared to single sensor data missions 19 

highlighting good overall global agreement, with some small regional discrepancies. Inter-model 20 

assessments address the source of these discrepancies, highlighting the choice of the mixed layer data 21 

product as a vital component for accurate primary production estimates. 22 

 23 

1 Introduction 24 

 25 

Phytoplankton primary production and associated seasonal blooms play an important role in the carbon 26 

cycle, being responsible for approximately 50% of total global net primary production (NPP) (Lurin, 1994; 27 

Longhurst et al., 1995; Field et al., 1998; Carr et al., 2006; Buitenhuis et al., 2013). Global NPP estimates 28 

are in the order of 50 Gt C per year (Longhurst et al., 1995; Field et al., 1998; Carr et al., 2006; Buitenhuis 29 

et al., 2013; Antoine et al., 1996; Silsbe et al., 2016; Johnson and Bif, 2021). When this organic carbon is 30 

sequestered to the ocean interior via the biological carbon pump (BCP) it can offset the flux of upwelled 31 

pre-industrial dissolved inorganic carbon (Mikaloff Fletcher et al., 2007; Gruber et al., 2009). In that sense, 32 

in the contemporary period, it does not play a significant role in the ocean uptake of anthropogenic carbon 33 

dioxide (CO2). However, the magnitude of the BCP is predicted to change in response to global climate 34 

https://doi.org/10.5194/essd-2023-244
Preprint. Discussion started: 29 June 2023
c© Author(s) 2023. CC BY 4.0 License.



2 

change, altering the ocean’s ability to store carbon and hence atmospheric levels of CO2 (Henson et al., 35 

2011; Bopp et al., 2013; Boyd et al., 2015; Tagliabue et al., 2021). In that sense, any natural or 36 

anthropogenic perturbations to the strength and efficiency of the BCP have the potential to drive important 37 

feedbacks on global climate change and thus need to be considered for a comprehensive understanding of 38 

the trajectory of the ocean carbon sink. Recent studies have estimated that global NPP is indeed changing, 39 

with declines ranging from 0.6 to 13% (Gregg and Rousseaux, 2019; Polovina et al., 2011; Chavez et al., 40 

2010; Behrenfeld et al., 2006) and increases of up to 2% (Saba et al., 2010). These changes are of concern 41 

given that alterations in the contribution that the BCP plays in offsetting upwelling of DIC will impact the 42 

net uptake of anthropogenic CO2 (Henson et al., 2011). NPP also plays an important role in supporting 43 

ecosystem function by sustaining biodiversity and the transfer of carbon, energy, and nutrients through 44 

pelagic and benthic food webs. As such, any changes to the amount of bulk carbon being produced is likely 45 

to impact the amount of carbon available for transfer to higher trophic levels via the marine food web with 46 

implications for ecosystem health and fisheries success. It is the seasonal cycle that sets much of the 47 

environmental variability in the factors that drive NPP, and it is the dominant mode of variability that 48 

couples the physical mechanisms of climate forcing to ecosystem response in production, diversity and 49 

carbon export (Monteiro et al., 2011). As such, understanding the seasonal evolution of NPP can provide a 50 

sensitive index of climate variability through its dependence on physical processes that transport nutrients 51 

and control the exposure of phytoplankton to sunlight (Summer and Lengfeller, 2008; Henson et al., 2009). 52 

It is with this in mind that we seek to provide a data product that can be used to understand the extent to 53 

which the seasonal characteristics of NPP are being modified by environmental conditions over sufficiently 54 

long time periods. NPP has already been highlighted as a better indicator of environmental change and 55 

disturbances in comparison to chlorophyll-a (Tilstone et al., 2023), highlighting its suitability for ecosystem 56 

assessment of tipping points and abrupt change. 57 

 58 

Phytoplankton NPP is strongly influenced by the physico-chemical conditions of the ocean, including light, 59 

temperature, macronutrient and micronutrient concentrations. Climate change has already begun to elicit 60 

widespread changes to these conditions, for example increases in temperature and heat content, increased 61 

sea ice melt and enhanced precipitation all contribute to alterations of oceanic density and the subsequent 62 

nutrient supply into the euphotic zone (Field et al., 2014; Rhein et al., 2013). Being able to understand how 63 

these climate driven changes in the physico-chemical environment impact phytoplankton NPP is key to 64 

addressing one of the most important scientific and policy challenges of the 21st century, namely being able 65 

to predict long term trends in the ocean carbon - climate system. This challenge is exacerbated by the 66 

sparsity of NPP data and a lack of continuous or regular in situ measurements for long enough periods to 67 

address multi decadal changes associated with climate forcing.  68 
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 69 

Satellite based remote sensing of ocean colour is the only observational capability that can provide synoptic 70 

views of upper ocean phytoplankton characteristics at high spatial and temporal resolution (~1km, ~daily) 71 

and high temporal extent (global scales, years to decades). In many cases these are the only systematic 72 

observations available for chronically under-sampled marine systems such as the Southern Ocean. 73 

Empirical expressions of estimating NPP are built around long recognised dependencies between 74 

phytoplankton biomass and environmental conditions (e.g., temperature, light and nutrients), with a 75 

succinct review available in Westberry et al. (2023). The vertically Generalized Production Model (VGPM) 76 

(Eppley, 1972; Behrenfeld and Falkowski, 1997) is a simpler satellite NPP model that relies on the 77 

relationship between chlorophyll and temperature derived growth rates with no explicit spectral, temporal, 78 

or vertical resolution. The Carbon-based Production Models (CbPM; Behrenfeld et al., 2005; Westberry et 79 

al., 2008) rely on particulate backscattering estimates of phytoplankton carbon as a biomass indicator 80 

instead of chlorophyll. This approach allows for some of the variability in chlorophyll to be attributed to 81 

physiological adjustments to light and nutrients (e.g., photoacclimation), independent of changes in NPP. 82 

The more recent CAFE model (Silsbe et al., 2016) builds upon this approach but in addition incorporates 83 

the influence of non-algal absorption on the attenuation of the underwater light field, which if not accounted 84 

for has a tendency to overestimate NPP (notably in coastal waters). Recently, considerable effort has been 85 

invested to provide one of the longest records of ocean colour by merging data and correcting inter-sensor 86 

biases from multiple ocean colour satellite sensors (Sathyendranath et al., 2019a), known as the Ocean 87 

Colour Climate Change Initiative (OC-CCI). This time series of 25 years (as of 2023) has already been 88 

utilised to provide estimates of trends in global NPP (Kulk et al., 2020), with results showing that trends in 89 

NPP were linked to trends in chlorophyll-a and related to changes in the physico-chemical conditions of 90 

the water column from inter-annual and multi-decadal climate oscillations. However, this study only 91 

investigated one NPP algorithm as opposed to using a suite of different algorithms with varying sensitivities 92 

to specific processes, as is done for the assessments of predicted change from earth system models in the 93 

coupled model intercomparison project (CMIP).  94 

 95 

Given the importance of NPP for assessing carbon budgets, ecosystem health and environmental change it 96 

is becoming increasingly clear that users require easy access to appropriate data products. Unfortunately, 97 

the global NPP algorithm applied to OC-CCI by Kulk et al. (Kulk et al., 2020) is not available for download 98 

on the OC-CCI server. Although an NPP data product is available from Copernicus Marine Services, this 99 

is only applied to the temporally limited GlobColour data product and similarly is only available for a single 100 

NPP algorithm (Antoine and Morel, 1996). The most comprehensive suite of NPP algorithms is provided 101 

by the Ocean Productivity website (http://sites.science.oregonstate.edu/ocean.productivity/custom.php), 102 
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however these are also only applied to single sensor missions (SeaWIFS, MODIS, VIIRS) thus restricting 103 

time periods of interest and preventing any longer-term assessments of change. Furthermore, it is difficult 104 

for the user to ascertain exactly which ancillary data products (i.e., MLD criterion, nitracline) were being 105 

used in the final empirical derivation of NPP.  106 

 107 

Here we present a new ocean colour data product that incorporates 5 NPP algorithms applied to the 25-year 108 

merged sensor OC-CCI time series. This multi-model data product provides a range of estimates of global 109 

NPP from 1998 to 2022 at both 8-day and monthly resolution and at a spatial coverage of 25 km. The 110 

distribution of the models are assessed across different oceanic biomes and long term observatory sites to 111 

highlight either consensus or outliers. The outputs of these algorithms are assessed for any biases or 112 

differences in comparison to the original outputs from single sensor missions and intra-algorithm 113 

differences for the multi-sensor satellite record.  114 

 115 

2 Materials and Methods 116 

 117 

25 years of ocean colour data from 1998 – 2022 were downloaded from the OC-CCI server (8-day; 4 km; 118 

v6.0; Sathyendranath et al., 2019), including chlorophyll a concentration (chl-a; mg m-3), backscatter at 443 119 

nm (bbp; m
-1), the diffuse attenuation coefficient at 490 nm (Kd 490; m-1), the phytoplankton absorption 120 

coefficient at 443 nm (aph; m
-1) and the detrital absorption coefficient at 443 nm (adg; m

-1). As the OC-CCI 121 

server does not contain the spectral slope of bbp (η; m-1 nm-1), it was calculated following equation 1 from 122 

Pitarch et al. (2019) using remote sensing reflectance (Rrs) at 443 nm and 560 nm. Daily integrated 123 

photosynthetically active radiation (PAR; mol photons m-2 d-1) data were downloaded from Glob-Colour 124 

(http://www.globcolour.info/). Sea surface temperature (SST; °C) data were downloaded from the Group 125 

for High Resolution Sea Surface Temperature (GHRSST; https://www.ghrsst.org/). The Hadley EN4.2.2 126 

gridded temperature and salinity profiles (Good et al., 2013) were converted to density (σ; kg m-3) to derive 127 

mixed layer depth (MLD; m) using the density thresholds of 0.03 kg m-3 (de Boyer Montégut et al., 2004) 128 

and 0.125 kg m-3. Additional data for MLD were retrieved from HYCOM 129 

(https://www.hycom.org/data/glba0pt08), for both density criteria (downloaded from 130 

http://sites.science.oregonstate.edu/ocean.productivity/).  131 

 132 

For the primary analysis of the paper the outputs using the Hadley Δσ10m = 0.030 kg m-3 MLD data product 133 

was used (Ryan-Keogh, 2023d). The reason for this choice were concerns around the accuracy of the 134 

HYCOM MLD data product to best represent in situ conditions. A trend analysis performed on all MLD 135 

products and criterion (Figure A1) revealed distinct directional differences in the trends of Hadley versus 136 
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HYCOM, with the Hadley MLD product the only one to best represent the global MLD trends as outlined 137 

in Sallée et al. (2021). However, the outputs using Hadley Δσ10m = 0.125 kg m-3 (Ryan-Keogh, 2023a), 138 

HYCOM Δσ10m = 0.030 kg m-3 (Ryan-Keogh, 2023b) and HYCOM Δσ10m = 0.125 kg m-3 (Ryan-Keogh, 139 

2023c) are all available. 140 

 141 

The nitracline depth was defined as the depth at which nitrate and nitrite was equal to 0.5 μM (Westberry 142 

et al., 2008), using the monthly data from the World Ocean Atlas 2018 (WOA18; (Garcia et al., 2019). The 143 

total backscattering of pure seawater (bbw; m-1) was derived as a function of SST and salinity following 144 

Zhang and Hu (2009), using monthly salinity data from WOA18 averaged for the top 20 m.  145 

 146 

All data were regridded onto a regular grid of 25 km spatial resolution, using bilinear interpolation using 147 

the xESMF Python package (Zhuang, 2018), at 8-day temporal resolution. The remaining gaps were filled 148 

by applying a linear interpolation scheme in sequential steps of longitude, latitude and time (Racault et al., 149 

2014) using a three-point window. If one of the points bordering the gap along the indicated axis was invalid 150 

it was omitted from the calculation, whilst if two surrounding points were invalid then the gap was not 151 

filled. Finally, the data were smoothed by applying a moving average filter of the previous and next 152 

timestep. For more details on this method see Salgado-Hernanz et al. (2019). 153 

  154 

NPP (mg C m-2 d-1) was calculated using 5 different algorithms, the ‘Eppley-VGPM’ model (Eppley, 1972), 155 

the ‘Behrenfeld-VGPM’ model (Behrenfeld and Falkowski, 1997), the ‘Behrenfeld-CbPM’ model 156 

(Behrenfeld et al., 2005), the ‘Westberry-CbPM’ model (Westberry et al., 2008) and the ‘Silsbe-CAFE’ 157 

model (Silsbe et al., 2016). Both Eppley-VGPM and Behrenfeld-VGPM models are chlorophyll based 158 

production models with a temperature-dependent derivation of photosynthetic efficiencies. The Behrenfeld-159 

CbPM and Westberry-CbPM models are based upon deriving carbon biomass from backscatter coefficients 160 

and growth rates from chlorophyll-to-carbon ratios, with the Westberry-CbPM being spectrally resolved 161 

across 9 wavelengths. The Silsbe-CAFE model is an absorption based model that is spectrally resolved 162 

across 21 wavelengths, whilst also being resolved across the diel cycle from sunrise to sunset. For more 163 

details on which parameters are required for each model please see Table 1.  164 

 165 
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Eppley-VGPM ✓ ✓ × × × × × × × ✓ × × 

Behrenfeld-VGPM ✓ ✓ × × × × × × × ✓ × × 

Behrenfeld-CbPM ✓ ✓ ✓ × × ✓ × × ✓ × × × 

Westberry-CbPM ✓ ✓ ✓ × × ✓ × × ✓ × ✓ × 

Silsbe-CAFE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ 

Table 1: Data variables, including chlorophyll-a (Chl-a; mg m-3), photosynthetically active radiation (PAR; 166 

mol photons m-2 d-1), backscatter at 443 nm (bbp; m
-1), phytoplankton absorption at 443 nm (aph; m

-1), detrital 167 

absorption at 443 nm (adg; m
-1), diffuse attenuation coefficient at 490 nm (Kd; m

-1), the spectral slope of 168 

backscatter (η; m-1 nm-1), the backscatter of pure water (bbw; m-1), mixed layer depth (MLD; m), sea surface 169 

temperature (SST; °C), nitracline depth (m) and sea surface salinity (SSS), used in the derivation of net 170 

primary production using 5 models including the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-CbPM, 171 

Westberry-CbPM and Silsbe-CAFE. 172 

 173 

For presentation purposes the global data were separated into biomes using the classification from Fay & 174 

McKinley (2014), while long-term observatories were selected as the Bermuda Atlantic Time Series (30.7-175 

32.7°N, 59.2-61.2°W), the Hawaii Oceanic Time Series (21.8-23.8°N, 157-159°W), the Southern Ocean 176 

Time Series (46.0-48.0°S, 139-141°E) and the Porcupine Abyssal Plain observatory (48-50°N, 15.5-177 

17.5°W). 178 

 179 

For comparison to the OC-CCI outputs presented here, monthly NPP data of Eppley-VGPM, Behrenfeld-180 

VGPM, Westberry-CbPM and Silsbe-CAFE were downloaded from the Ocean Productivity website 181 

(http://sites.science.oregonstate.edu/ocean.productivity/) for SeaWIFS (1998 - 2007) and MODIS (2003 - 182 

2019). Unfortunately, the NPP data for the Behrenfeld-CbPM is no longer available as it has been 183 

superseded by the Westberry-CbPM NPP data. Pearson's correlation coefficients (R2) were calculated 184 

between the SeaWIFS/MODIS derived NPP and the OC-CCI derived NPP.  185 

 186 

3 Results & Discussion 187 

 188 
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Comparing intra-model climatological means 189 

 190 

The climatological means of each NPP model show a large degree of spatial heterogeneity, with higher 191 

values associated with western boundary currents and at the equator (Figure 1). The temperature based 192 

Eppley-VGPM and Behrenfeld-VGPM models (Figure 1a,b) show good agreement in terms of their ranges 193 

and means (Table 2), but there are large differences particularly in the North Atlantic and the Arabian Sea 194 

and equatorial Pacific. The carbon based Behrenfeld-CbPM and Westberry-CbPM models (Figure 1c,d) 195 

show very good agreement in terms of their climatological means although discrepancies are nonetheless 196 

evident (e.g. higher NPP in the Southern Ocean and North Atlantic in the Behrenfeld-CbPM and higher 197 

NPP in the equatorial region in the Westberry-CbPM). The absorption based Silsbe-CAFE model (Figure 198 

1e) has a much smaller range across the global ocean. A map of the coefficient of variation (CV = 199 

σNPP/<NPP>; Figure 2a) shows the highest values (depicting agreement between models) in the high 200 

latitudes and in coastal regions. Unlike the comparison in Westberry et al. (2023) (which included 201 

Behrenfeld-VGPM, Westberry-CbPM and Silsbe-CAFE applied to MODIS data from 2003 to 2019), we 202 

do not find lower CV values to be specifically associated with highly productive waters, nor do we find a 203 

similar distribution for very high CV values. The Silsbe-CAFE model has the most peaked probability 204 

distributions (PDF) of all the models (Figure 2b) with a narrow range, which is similar to that reported in 205 

Westberry et al. (2023). The other models show a much lower peak and broader range with the two CbPM 206 

models centred around a lower median distribution of NPP (more similar to that of Silsbe-CAFE) than the 207 

slightly higher median NPP of the two VGPM models. When we examine the cumulative distributions 208 

(CDF) of each model (Figure 2c), the medians were an order of magnitude higher in the Eppley-VGPM 209 

(1019.5 mg C m-2 d-1) and Behrenfeld-VGPM (1206.6 mg C m-2 d-1) in comparison to the Behrenfeld-CbPM 210 

(298.2 mg C m-2 d-1), Westberry-CbPM (531.1 mg C m-2 d-1) and Silsbe-CAFE (495.5 mg C m-2 d-1). Whilst 211 

the median values for both Westberry-CbPM and Silsbe-CAFE are similar to those reported in Westberry 212 

et al. (2023), the Behrenfeld-VGPM values are much higher than what was previously reported (332 mg C 213 

m-2 d-1), which is not necessarily surprising when considering that different SST, PAR and Chl-a products 214 

are being used in this analysis.  215 

 216 
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 217 

Figure 1: Climatological means of net primary productivity (NPP) for the period of 1998-01-01 to 2022-218 

12-31 for the (a) Eppley-VGPM, (b) Behrenfeld-VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM, (e) 219 

Silsbe-CAFE model and (f) the mean of all models. 220 

 221 
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 222 

Figure 2: The distribution of the model net primary production (NPP) values. (a) the coefficient of variation, 223 

calculated as the inter-model standard deviation normalised to the inter-model mean. (b) Probability 224 

distributions (PDF) of the climatological mean NPP for each of the models. (c) Cumulative distributions of 225 

the climatological mean NPP for each of the models. 226 

 227 

 MLD criterion Min Max Mean±Stdev Median IQR Global 

NPP 

Eppley-

VGPM 

n/a 12.7 18941.2 457.8±464.4 347.4 311.2 68.3±2.8 

Behrenfel

d-VGPM 

n/a 11.8 17289.1 485.2±470.7 352.0 317.8 69.2±2.6 
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Behrenfel

d-CbPM 

Hadley Δσ10m = 

0.03 kg m-3 

7.4 × 10-8 6933.1 596.7±362.9 517.9 368.5 86.1±2.5 

Hadley Δσ10m = 

0.125 kg m-3 

7.9 × 10-13 6605.1 458.8±293.3 387.3 308.7 69.2±1.8 

HYCOM Δσ10m 

= 0.03 kg m-3 

1.7 × 10-11 22459.4 655.3±770.0 488.0 349.7 77.6±6.3 

HYCOM Δσ10m 

= 0.125 kg m-3 

2.0 × 10-11 26208.4 743.0±1264.0 425.2 360.0 87.8±7.4 

Westberry

-CbPM 

Hadley Δσ10m = 

0.03 kg m-3 

9.7 × 10-29 7183.2 545.6±292.3 477.8 331.8 84.6±2.6 

Hadley Δσ10m = 

0.125 kg m-3 

1.9 𐄂 10-

28 

6894.5 456.8±279.6 380.5 318.7 73.0±2.3 

HYCOM Δσ10m 

= 0.03 kg m-3 

3.2 × 10-12 25505.9 506.7±267.0 451.6 310.4 78.0±3.3 

HYCOM Δσ10m 

= 0.125 kg m-3 

9.1 × 10-

157 

135462.

7 

454.1±323.8 390.8 302.8 70.1±3.5 

Silsbe-

CAFE 

Hadley Δσ10m = 

0.03 kg m-3 

22.1 1193.2 388.8±100.5 374.7 137.4 59.3±3.9 

Hadley Δσ10m = 

0.125 kg m-3 

22.1 1193.2 383.1±100.9 365.2 141.1 58.9±3.8 

HYCOM Δσ10m 

= 0.03 kg m-3 

22.3 1204.1 386.6±99.6 371.0 138.3 59.2±3.9 

HYCOM Δσ10m 

= 0.125 kg m-3 

17.9 1193.2 378.3±102.5 361.9 140.9 58.3±3.8 

Table 2: The climatological global minimum, maximum, mean±standard deviation, median and 228 

interquartile range (IQR: 75th - 25th) for each net primary production model. Included is the sum of the 229 
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global NPP (Pg C yr-1) from each model (averaged for each year from 1998 to 2022, including the standard 230 

deviation), including the different MLD criterion used (where n/a means not applicable). 231 

 232 

Investigating the difference in climatological means between each model and the ensemble model mean 233 

highlights the regional distribution of positive and negative biases relative to the ensemble model mean 234 

(Figure A2). For example, the two VGPM models show an opposite distribution in their relative differences 235 

with Behrenfeld-VGPM being higher in the North-Atlantic, Arctic and Antarctic Circumpolar Current 236 

(ACC) regions while Eppley-VGPM is higher in the equatorial region. Both CbPM models show a tendency 237 

to overestimate NPP compared to other models except in the Arctic where the Westberry-VBPM is instead 238 

lower than the ensemble model mean. Interestingly, although the climatological mean of the Silsbe-CAFE 239 

appears lower than all other models (Figure 1) this is not globally consistent when expressed as a difference 240 

which instead highlights that the Silsbe-CAFE overestimates NPP relative to other models in the 241 

oligotrophic gyres and ACC region.  242 

 243 

Finally, if we compare global oceanic NPP from the models with previous IPCC estimates of 50 Pg C m-2 244 

yr-1, only the Silsbe-CAFE model has a similar range in NPP (58.9 - 59.3 Pg C m-2 yr-1), whereas the ranges 245 

of all the other models are much higher (68.3 - 87.8 Pg C m-2 yr-1), with some estimates higher than 246 

previously reported (32.0 - 70.7 Pg C m-2 yr-1; Buitenhuis et al., 2013; Sathyendranath et al., 2019b). 247 

 248 

Interrogating spatio-temporal patterns of NPP Data Products 249 

 250 

Fay and McKinley (2014) classified the global ocean into 17 biomes (Figure 3) according to distinct 251 

biological (chl-a concentrations) and physical characteristics (SST, MLD and ice fraction). Splitting the 252 

NPP data according to these biomes allows a regional comparison of inter model differences and 253 

similarities. The annual model means of each NPP product range from a minimum value of 207.85±38.67 254 

mg C m-2 d-1 in the Southern Ocean subpolar seasonally stratified (SO SPSS) biomes (Figure 3s) to a 255 

maximum value of 652.21±135.06 mg C m-2 d-1 in the East Pacific equatorial biome (PEQU E) biome 256 

(Figure 3g). When globally averaged (Figure 3s) the models appear to agree very well in their annual 257 

climatologies of NPP, however when interrogated on a per biome basis, some discrepancies emerge. For 258 

example, although there is particular good agreement in NPP in the oligotrophic gyres (Figure 3e,h,l,n), 259 

large intra-model differences are particularly evident in the equatorial biomes (Figure 3f,g,m) and the high 260 

latitude Atlantic and Pacific (Figure 3b,c,i,j). In some biomes there is also a tendency for models to merge 261 

or diverge over time. For example, there is a large inter model spread in the early 2000’s in the North 262 

Atlantic and Southern Ocean ICE biomes (Figure 3 i, r), which narrows over time, while the opposite is 263 
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apparent in the North Atlantic Subpolar seasonally stratified biome (NA SPSS) biome (Figure 3j). Also 264 

worth noting are regions where all models agree except one, for example the comparatively lower NPP for 265 

the Behrenfeld-VGPM model in the West Pacific equatorial biome (PEQU W) (Figure 3f). 266 

 267 

 268 
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Figure 3: (a) Map of the mean biomes from Fay and McKinley (2014), where white areas represent regions 269 

which do not fit into any biome classification. Annual means of net primary productivity (NPP; mg C m-2 270 

d-1) from the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE 271 

model for the (b) North Pacific Ice biome (NP ICE), (c) North Pacific Subpolar seasonally stratified biome 272 

(NP SPSS), (d) North Pacific Subtropical seasonally stratified biome (NP STSS), (e) North Pacific 273 

Subtropical permanently stratified biome (NP STPS), (f) West Pacific equatorial biome (PEQU W), (g) 274 

East Pacific equatorial biome (PEQU E), (h) South Pacific Subtropical permanently stratified biome (SP 275 

STPS), (i) North Atlantic ice biome (NA ICE), (j) North Atlantic Subpolar seasonally stratified biome (NA 276 

SPSS), (k) North Atlantic Subtropical seasonally stratified biome (NA STSS), (l) North Atlantic Subtropical 277 

permanently stratified biome (NA STPS), (m) Equatorial Atlantic biome (AEQU), (n) South Atlantic 278 

Subtropical permanently stratified biome (SA STPS), (o) Indian Subtropical permanently stratified biome 279 

(IND STPS), (p) South Ocean Subtropical seasonally stratified biome (SO STSS), (q) Southern Ocean 280 

Subpolar seasonally stratified biome (SO SPSS), (r) Southern Ocean ice biome (SO ICE) and (s) the global 281 

ocean.  282 

 283 

In the next model comparison, we combine biomes into three regions; the northern high latitude, equatorial 284 

and southern high latitude to examine the seasonal cycle in NPP across the five models. Here, inter-model 285 

differences become even more pronounced in terms of their minima, maxima and phenology of the seasonal 286 

cycle (Figure 4). In the northern hemisphere biomes (Figure 4a; North Pacific and North Atlantic ice, 287 

subpolar seasonally stratified and subtropical seasonally stratified biomes) there is a large range of 288 

variability in maximum NPP, with the Behrenfeld-VGPM and Behrenfeld-CbPM exhibiting the highest 289 

peak values (919.60 and 936.59 mg C m-2 d-1, respectively) and the Silsbe-CAFE model exhibiting the 290 

lowest peak value (507.41 mg C m-2 d-1). The timing of the peaks are also offset with the earliest peak 291 

occurring in the Eppley-VGPM, Behrenfeld-VGPM and Silsbe-CAFE models at the start of June while the 292 

Behrenfeld-CbPM and Westberry-CbPM models puts the timing of the peak a few weeks later in mid-June. 293 

The southern hemisphere biomes (Figure 4c; Southern Ocean ice, subpolar seasonally stratified and 294 

subtropical seasonally stratified biomes) similarly express a large range in amplitude of the seasonal peak 295 

across all models, with both CbPM models exhibiting the highest values (758.15 and 649.42 mg C m-2 d-1, 296 

respectively) whereas the Eppley-VGPM exhibits the lowest peak value (379.62 mg C m-2 d-1). The timing 297 

of the peak is similar for Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE in January with the 298 

Eppley-VGPM and Behrenfeld-VGPM models placing the bloom peak earlier in December. The low 299 

latitude and equatorial biomes (Figure 4b; North & South Pacific subtropical permanently stratified, North 300 

& South Atlantic subtropical permanently stratified, Indian subtropical permanently stratified, Atlantic and 301 

Pacific equatorial biomes) do not exhibit any clear seasonal cycle and have a lower range of variability 302 
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across all the models. The range of divergence is more similar to that of the seasonal troughs of NPP in the 303 

Northern and Southern high latitude regions, although rates of NPP are not as low (mean for all models for 304 

the time series = 412.85±69.86 mg C m-2 d-1).  305 

 306 

 307 

Figure 4: The seasonal cycle of net primary productivity (NPP; mg C m-2 d-1) from the Eppley-VGPM, 308 

Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE models for (a) the northern 309 

high latitude regions (NA ICE, NP ICE, NA SPSS, NP SPSS, NA STSS and NP STSS), (b) the equatorial 310 

and low latitude regions (AEQU, PEQU E, PEQU W, IND STPS, NA STPS, SA STPS, NP STPS, SP 311 

STPS) and (c) the southern high latitude regions (SO ICE, SO SPSS and SO STSS). Data is averaged across 312 

the time period 1998 – 2022. Please note that for panel c the data has been shifted for the peak to appear in 313 

the centre of the plot. The circles represent the timing of the annual maximum. 314 

https://doi.org/10.5194/essd-2023-244
Preprint. Discussion started: 29 June 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 315 

We further examined the variability between models by choosing 4 long-term observatory sites; the 316 

porcupine abyssal plain observatory (PAP; Figure 5a), the Bermuda Atlantic Time Series (BATS; Figure 317 

5b), the Hawaii Oceanic Time Series (HOTS; Figure 5c) and the Southern Ocean Time Series (SOTS; 318 

Figure 5d). The BATS site has the lowest range of NPP with the smallest inter-model differences 319 

(305.12±45.54 mg C m-2 d-1), while HOTS and SOTS express a similar range in NPP (351.86±68.31 & 320 

345.42±76.54 mg C m-2 d-1, respectively) and the PAP site has the highest range in NPP and greatest inter-321 

model differences (625.83±190.81 mg C m-2 d-1).  322 

 323 

 324 

Figure 5: Annual means of net primary productivity (NPP; mg C m-2 d-1) from the Eppley-VGPM, 325 

Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE models for (a) the Porcupine 326 

Abyssal Plain (PAP) observatory, (b) the Bermuda Atlantic Time Series (BATS), (c) the Hawaii Oceanic 327 

Time Series (HOTS), and (d) the Southern Ocean Time Series (SOTS). 328 

 329 

Comparison with MODIS and SeaWIFS derived NPP 330 

 331 

When first designed, these NPP models were originally implemented on both SeaWIFS and MODIS data 332 

products. As such, we are able to compare the new OC-CCI derived NPP for all models presented here with 333 

the original NPP from both SeaWIFS and MODIS that is downloadable from the Ocean Productivity 334 
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website (http://sites.science.oregonstate.edu/ocean.productivity/). Spatial correlation maps were 335 

subsequently derived for the Eppley-VGPM, Behrenfeld-VGPM, Westberry-CbPM and Silsbe-CAFE 336 

models using both SeaWIFS and OC-CCI derived NPP for the period of 1998-01-01 to 2007-12-31 (Figure 337 

A3) and the MODIS and OC-CCI derived NPP for the period 2003-01-01 to 2019-12-31 (Figure A4). 338 

Results show very good agreement for Eppley-VGPM (Figure A3a,b; Figure A4a,b) and Behrenfeld-339 

VGPM (Figure A3c,d; Figure A4c,d) for both SeaWIFS (median R2 = 0.83 and 0.87 respectively) and 340 

MODIS (median R2 = 0.85 and 0.89 respectively) with some lower R2 values evident in the equatorial 341 

region. Correlations were generally poor for the Westberry-CbPM model for both SeaWIFS (median R2 = 342 

0.41) and MODIS (median R2 = 0.51). Correlations against the Silsbe-CAFE model were good at higher 343 

latitudes for both SeaWIFS and MODIS but poor in the equatorial region with the overall correlation being 344 

worse for MODIS (median R2 = 0.65) than for SeaWIFS (median R2 = 0.69). However, the NPP data 345 

products generated from SeaWIFS and MODIS for these respective time periods were derived using the 346 

HYCOM MLD data product and not Hadley (as per the OC-CCI NPP product), which may account for 347 

some of the observed variability and poor correlations. For consistency, we can instead similarly use the 348 

HYCOM MLD with a density criterion of Δσ10m = 0.030 kg m-3 (Figure A5) to derive the OC-CCI NPP 349 

product for comparison with SeaWIFS and MODIS products for the Westberry-CbPM and Silsbe-CAFE 350 

models (which both use MLD as input criteria unlike the VGPM models) (Ryan-Keogh, 2023b). Here we 351 

see an overall improvement in the spatial correlation maps and distribution of R2 which for Westberry-352 

CbPM increased in both SeaWIFS and MODIS to an R2 = 0.50 and 0.60, respectively, while for the Silsbe-353 

CAFE model the correlation increased to an R2 = 0.76 and 0.70 (for SeaWIFS and MODIS, respectively).  354 

 355 

The reasons for discrepancies between NPP products derived from OC-CCI versus SeaWIFS/MODIS can 356 

culminate from differences in the satellite products themselves (which will not be investigated here), but 357 

also from additional sources of variability that stem primarily from differences in the criteria of input 358 

variables. For instance, the original Westberry-CbPM study used a mixed layer definition of ΔT10m = 0.5°C, 359 

whereas the NPP products applied here use a density criteria of Δσ10m = 0.030 kg m-3. If we instead derive 360 

NPP from an MLD that is defined with a density criteria of Δσ10m = 0.125 kg m-3 (as per the alternative 361 

MLD criterion listed on the Ocean Productivity website 362 

(http://sites.science.oregonstate.edu/ocean.productivity/)) (Ryan-Keogh, 2023c) we see a further 363 

improvement in the spatial correlation of NPP for the Westberry-CbPM (Figure A5a-d), for both SeaWIFS 364 

(R2 = 0.65) and MODIS time periods (R2 = 0.74) as well as the Silsbe-CAFE model for both SeaWIFS (R2 365 

= 0.82) and MODIS (R2 = 0.77), with poor agreement still persisting in the equatorial Atlantic and Arabian 366 

Sea.  367 

 368 
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Another potential source of variability for the Westberry-CbPM model specifically lies in the data source 369 

used for determining the nitracline depth. Westberry et al. (2008) originally used the WOA01 data product 370 

whereas here we have used the updated WOA18 product. As a brief investigation on differences between 371 

datasets we looked at examples of the total number of nitrate data points in WOA09 and WOA13, 1186280 372 

and 3603293 respectively, compared to WOA18, 4097914, representing increases of 203% and 14% 373 

respectively. Further analysis investigated differences in the nitracline depth if derived using WOA13 374 

versus WOA18 (Figure A7) results show that differences occupy the same spatial extent as the areas of 375 

poor spatial correlation. Future versions of this product will need to incorporate updates to global nitrate 376 

climatologies, such as the planned release of WOA23 which will greatly improve estimates of the nitracline 377 

depth. 378 

 379 

The remaining potential sources of variability, specific to the Silsbe-CAFE model, are the choice of salinity 380 

data for deriving the backscattering of pure water (bbw) and the derivation of the spectral slope of bbp (η). 381 

In Silsbe et al. (2016) they assumed a constant salinity of 32.5 for simplicity, whereas here we have used 382 

monthly means of salinity taken from WOA18. The difference between this reference value and the monthly 383 

means (Figure A8) show that areas such as the equatorial Pacific and Atlantic, which had the lowest spatial 384 

correlations for the Silsbe-CAFE model, have some of the biggest differences in salinity. A sensitivity 385 

analysis of the Zhang and Hu (2009) derivation of backscattering by pure water shows that the incorrect 386 

implementation of salinity can have significant implications on the final value (Figure A9). As such we 387 

recommend the use of monthly climatologies, but in the future it will become necessary to account for 388 

changing salinities, particularly in polar regions where changes in sea ice extent is resulting in freshening 389 

(Haumann et al., 2020). One potential data product could be the climate change initiative satellite based sea 390 

surface salinity product (Boutin et al., 2021), which has already shown strong promise of capturing 391 

variations in salinity that match in situ measurements from both Argo floats and ships. As OC-CCI does 392 

not release η as a standard product we had to derive it using the Rrs data following equation 1 from Pitarch 393 

et al. (2019). However, the wavelengths required for this derivation are 443 and 555 nm, with OC-CCI 394 

having only 560 nm. Nevertheless, we find good agreement between MODIS derived η and OC-CCI η 395 

across the global ocean (Figure A10), with only a few areas in the Arctic that have very low agreement 396 

(median R2 = 0.78). 397 

 398 

4 Conclusion 399 

 400 

The data product presented here provides a continuous record of global satellite derived NPP at 8-day and 401 

monthly resolution using multiple algorithms applied to the OC-CCI product as the longest continuing 402 
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record of satellite ocean colour (Sathyendranath et al., 2019a). The purpose is not to advocate for the 403 

suitability of one NPP model over another, as other studies have already highlighted the strengths and 404 

weaknesses of different satellite NPP algorithms ability to capture the appropriate range of in situ NPP 405 

measurements (Saba et al., 2011; Friedrichs et al., 2009; Carr et al., 2006; Campbell et al., 2002). Rather, 406 

the strength in this multi-model data product lies in its ability to offer a range of NPP across different 407 

algorithms either as a climatology or as a long-term climatic trend for a user's specific region of interest. 408 

Additionally, by providing multiple algorithms the user can interrogate the distribution of NPP across 409 

different models to identify consensus or outliers that can inform decisions on whether or not to retain or 410 

reject specific algorithms in their regional analysis. Flexibility also exists on decisions around the mixed 411 

layer depth with two different density criteria (Δσ10m = 0.030 or 0.125 kg m-3) or products (HYCOM versus 412 

Hadley) that can be altered to ensure that the MLD input best reflects the user's region of interest. Currently 413 

the OC-CCI is released on an annual basis with specific corrections and adjustments made based upon 414 

assessments of previous single sensor data streams and any new data sources. The multi-model data product 415 

presented here will be updated on the same regular basis as and when OC-CCI data is updated, with 416 

backwards corrections similarly applied to prevent the retention of erroneous values in the data record. 417 

Future updates to this data product will similarly incorporate not only updated climatological mean values 418 

(i.e., the planned release of WOA2023), but will also incorporate additional NPP algorithms, (i.e., SABPM; 419 

Tao et al., 2017). to provide the user with a wide range of options for assessing climatological seasonal 420 

cycles as well as trends and trajectories of oceanic productivity. 421 

 422 

Appendices 423 

 424 
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 425 

Figure A1: The annual mean trends of the different MLD data products HYCOM (a-f) and Hadley (g-l) for 426 

the different criterion of Δσ10m = 0.030 kg m-3 (a-c,g-i) and Δσ10m = 0.125 kg m-3 (d-f,j-l) averaged for the 427 

whole year (a,d,g,j), December to February (b,e,h,h) and June to August (c,f,i,l). Trend analysis performed 428 

as described in Ryan-Keogh et al. (2023). 429 
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 430 

Figure A2: The difference in climatological mean [1998-2022] NPP between the inter-model mean and (a) 431 

Eppley-VGPM, (b) Behrenfeld-VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM and (e) Silsbe-CAFE 432 

models.  433 
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 434 

Figure A3: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 435 

SeaWIFS and OC-CCI for the period of 1998-01-01 to 2007-12-31 for (a,b) Eppley-VGPM, (c,d) 436 

Behrenfeld-VGPM, (e,f) Westberry-CbPM and (g,h) Silsbe-CAFE. Please note that for Westberry-CbPM 437 

and Silsbe-CAFE, the MLD product used for SeaWIFS is HYCOM and the MLD product for OC-CCI is 438 

Hadley, both using the Δσ10m = 0.030 kg m-3 criterion. 439 
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 440 

Figure A4: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 441 

MODIS and OC-CCI for the period of 2003-01-01 to 2019-12-31 for (a,b) Eppley-VGPM, (c,d) Behrenfeld-442 

VGPM, (e,f) Westberry-CbPM and (g,h) Silsbe-CAFE. Please note that for Westberry-CbPM and Silsbe-443 

CAFE, the MLD product used for SeaWIFS is HYCOM and the MLD product for OC-CCI is Hadley, both 444 

using the Δσ10m = 0.030 kg m-3 criterion. 445 
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 446 

Figure A5: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 447 

SeaWIFS (a,b,e,f), MODIS (c,d,g,h) and OC-CCI for (a,b,c,d) Westberry-CbPM and (e,f,g,h) Silsbe-CAFE. 448 

Please note that the MLD product used is HYCOM with the Δσ10m = 0.030 kg m-3 criterion. Included in the 449 

histograms are the Pearson’s correlation coefficient R2 values using the Hadley MLD data product (in black) 450 

as displayed in Figures A3 and A4. 451 
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 452 

Figure A6: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values using the 453 

MLD criterion of Δσ10m = 0.125 kg m-3 (in grey) for (a,b) Westberry-CbPM SeaWIFS vs OC-CCI, (c,d) 454 

Westberry-CbPM MODIS vs OC-CCI, (e,f) Silsbe-CAFE SeaWIFS vs OC-CCI and (a,b) CAFE MODIS 455 

vs OC-CCI. Included in the histograms are the Pearson’s correlation coefficient R2 values using the MLD 456 

criterion of Δσ10m = 0.030 kg m-3 (in black) as displayed in Figures A3 and A4. 457 
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 458 

Figure A7: Maps of the difference in nitracline depth, where the nitracline depth is calculated as the depth 459 

at which nitrate + nitrite is equal to 0.5 μM, between monthly WOA2013 and WOA2018. 460 

 461 
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 462 

Figure A8: Maps of the difference in sea surface salinity (SSS) from the WOA18 monthly climatology and 463 

the reference SSS value used in Silsbe et al. (2016) of 32.5 PSU. 464 
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 465 

Figure A9: Sensitivity analysis of the calculation of the total backscattering of pure seawater (bsw; m-1) as a 466 

function of both (a) Temperature (°C) (colour scale = Salinity) and (b) Salinity (colour scale = Temperature 467 

(°C)).  468 
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 469 

 470 

Figure A10: A spatial correlation map (a) and a histogram of Pearson’s correlation coefficient R2 values (b) 471 

between monthly MODIS and OC-CCI derived spectral slope of bbp (η) for the period of 2003-01-01 to 472 

2019-12-31. 473 

 474 

Data Availability 475 

 476 

The primary manuscript data are available at: https://doi.org/10.5281/zenodo.7849935 (Ryan-Keogh, 477 

2023d). The NPP products which used Hadley Δσ10m = 0.125 kg m-3 data are available at: 478 

https://doi.org/10.5281/zenodo.7858590 (Ryan-Keogh, 2023a). The NPP products which used HYCOM 479 

Δσ10m = 0.030 kg m-3 data are available at: https://doi.org/10.5281/zenodo.7860491 (Ryan-Keogh, 2023b). 480 

The NPP products which used HYCOM Δσ10m = 0.125 kg m-3 data are available at: 481 

https://doi.org/10.5281/zenodo.7861158 (Ryan-Keogh, 2023c). OC-CCI data were downloaded from 482 

https://www.oceancolour.org/. SeaWIFS and MODIS NPP data products used for the comparison were 483 

downloaded from the Ocean Productivity website 484 

(http://sites.science.oregonstate.edu/ocean.productivity/). The Hadley gridded temperature and salinity data 485 

were downloaded from https://www.metoffice.gov.uk/hadobs/en4/. The HYCOM MLD data were 486 

downloaded from the Ocean Productivity website 487 

(http://sites.science.oregonstate.edu/ocean.productivity/). PAR data were downloaded from 488 

http://www.globcolour.info/. Sea surface temperature data were downloaded from https://www.ghrsst.org/. 489 
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